GMF Is a Cofilin Homolog that Binds Arp2/3 Complex to Stimulate Filament Debranching and Inhibit Actin Nucleation
نویسندگان
چکیده
Cell locomotion and endocytosis are powered by the rapid polymerization and turnover of branched actin filament networks nucleated by Arp2/3 complex. Although a large number of cellular factors have been identified that stimulate Arp2/3 complex-mediated actin nucleation, only a small number of studies so far have addressed which factors promote actin network debranching. Here, we investigated the function of a conserved homolog of ADF/cofilin, glia maturation factor (GMF). We found that S. cerevisiae GMF (also called Aim7) localizes in vivo to cortical actin patches and displays synthetic genetic interactions with ADF/cofilin. However, GMF lacks detectable actin binding or severing activity and instead binds tightly to Arp2/3 complex. Using in vitro evanescent wave microscopy, we demonstrated that GMF potently stimulates debranching of actin filaments produced by Arp2/3 complex. Further, GMF inhibits nucleation of new daughter filaments. Together, these data suggest that GMF binds Arp2/3 complex to both "prune" daughter filaments at the branch points and inhibit new actin assembly. These activities and its genetic interaction with ADF/cofilin support a role for GMF in promoting the remodeling and/or disassembly of branched networks. Therefore, ADF/cofilin and GMF, members of the same superfamily, appear to have evolved to interact with actin and actin-related proteins, respectively, and to make mechanistically distinct contributions to the remodeling of cortical actin structures.
منابع مشابه
GMF Severs Actin-Arp2/3 Complex Branch Junctions by a Cofilin-like Mechanism
BACKGROUND Branched actin filament networks driving cell motility, endocytosis, and intracellular transport are assembled in seconds by the Arp2/3 complex and must be equally rapidly debranched and turned over. One of the only factors known to promote debranching of actin networks is the yeast homolog of glia maturation factor (GMF), which is structurally related to the actin filament-severing ...
متن کاملCofilin Dissociates Arp2/3 Complex and Branches from Actin Filaments
BACKGROUND Actin-based cellular motility requires spatially and temporally coordinated remodeling of a network of branched actin filaments. This study investigates how cofilin and Arp2/3 complex, two main players in the dendritic nucleation model, interact to produce sharp spatial transitions between densely branched filaments and long, unbranched filaments. RESULTS We found that cofilin bind...
متن کاملGMF Promotes Leading-Edge Dynamics and Collective Cell Migration In Vivo
Lamellipodia are dynamic actin-rich cellular extensions that drive advancement of the leading edge during cell migration. Lamellipodia undergo periodic extension and retraction cycles, but the molecular mechanisms underlying these dynamics and their role in cell migration have remained obscure. We show that glia-maturation factor (GMF), which is an Arp2/3 complex inhibitor and actin filament de...
متن کاملArp2/3 Complex and Cofilin Modulate Binding of Tropomyosin to Branched Actin Networks
Tropomyosins are coiled-coil proteins that bind actin filaments and regulate multiple cytoskeletal functions, including actin network dynamics near the leading edge of motile cells. Previous work demonstrated that tropomyosins inhibit actin nucleation by the Arp2/3 complex and prevent filament disassembly by cofilin. We find that the Arp2/3 complex and cofilin, in turn, regulate the binding of ...
متن کاملCortactin promotes and stabilizes Arp2/3-induced actin filament network formation
Cortactin is a c-src substrate associated with sites of dynamic actin assembly at the leading edge of migrating cells. We previously showed that cortactin binds to Arp2/3 complex, the essential molecular machine for nucleating actin filament assembly. In this study, we demonstrate that cortactin activates Arp2/3 complex based on direct visualization of filament networks and pyrene actin assays....
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Current Biology
دوره 20 شماره
صفحات -
تاریخ انتشار 2010